skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Morales, Luis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of mechanical metamaterials in engineering applications is often limited because of uncertainty regarding their deformation behavior. This uncertainty necessitates large safety factors and assumptions about their behavior to be included in mechanical designs including metamaterials, which detracts from their greatest benefit, viz. their ultralight weight. In this study, a yield envelope was created for both a bending-dominated and a stretching-dominated cellular material topology to improve the understanding of the response of cellular materials under various load types and orientations. Experimental studies revealed that the shear strength of a cellular material is significantly lower than that predicted by Mohr’s criterion, necessitating a modification of the Mohr’s yield criterion for cellular materials. All topologies experienced tension–compression anisotropy and topology orientation anisotropy during loading, with the stretching-dominated topology experiencing the largest anisotropies. 
    more » « less